Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.464
Filtrar
1.
PLoS One ; 19(4): e0301205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625974

RESUMO

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Assuntos
Peixes-Gato , Lisina , Animais , Lisina/farmacologia , Metionina/farmacologia , Triptofano/farmacologia , Resistência à Doença , Staphylococcus aureus , Suplementos Nutricionais , Dieta/veterinária , Aminoácidos , Racemetionina , Ração Animal/análise
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542428

RESUMO

Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation and its treatment varies widely; however, when inflammation is high, a complete nutrient containing pre-digested elemental diet (ED) is used to preserve the intestinal tract. In this study, we investigated the mechanisms underlying the effectiveness of EDs for IBD using mice. C57BL/6 mice were orally treated with the ED (5 mL/day) and its ingredient L-tryptophan (Trp) (1-100 mg/kg), respectively. Flow cytometry analysis revealed that treatment with the ED and Trp (10 and 100 mg/kg) significantly increased the percentage of splenic CD4+-/CD25+-/Foxp3+ regulatory T cells (Tregs). In the 2% DSS-induced colitis-mouse model, Trp administration (100 mg/kg) led to a significant decrease in TNF-α and increase in IL-10 in the serum as well as a significant decrease in the inflammation score. Furthermore, the aryl hydrocarbon receptor (AhR) agonistic activity, which is a key function of Treg induction, of Trp and 15 Trp metabolites was characterized using a highly sensitive DR-EcoScreen cell assay. Five Trp metabolites, including L-kynurenine, acted as AhR agonists, while Trp did not. Taken together, these results suggest that the ED treatment has a Trp-dependent immunoregulatory effect, and several Trp metabolites that activate the AhR might contribute to induction of remission in patients with IBD.


Assuntos
Doenças Inflamatórias Intestinais , Triptofano , Humanos , Animais , Camundongos , Triptofano/farmacologia , Triptofano/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação
3.
Aquat Toxicol ; 270: 106904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513426

RESUMO

Due to their potential release into the environment, the ecotoxicity of Ti3C2Tx (MXene) nanomaterials is a growing concern. Unfortunately, little is known about the toxic effects and mechanisms through which Ti3C2Tx induces toxicity in aquatic organisms. The aim of this study is thus to investigate the toxic effects and mechanisms of Daphnia magna upon exposure to Ti3C2Tx with different sheet sizes (100 nm [Ti3C2Tx-100] and 500 nm [Ti3C2Tx-500]) by employing conventional toxicology and metabolomics analysis. The results showed that exposure to both Ti3C2Tx-100 and Ti3C2Tx-500 at 10 µg/mL resulted in a significant accumulation of Ti3C2Tx in D. magna, but no effects on the mortality or growth of D. magna were observed. However, the metabolomics results revealed that Ti3C2Tx-100 and Ti3C2Tx-500 induced significant changes in up to 265 and 191 differential metabolites in D. magna, respectively, of which 116 metabolites were common for both. Ti3C2Tx-100-induced metabolites were mainly enriched in phospholipid, pyrimidine, tryptophan, and arginine metabolism, whereas Ti3C2Tx-500-induced metabolites were mainly enriched in the glycerol-ester, tryptophan, and glyoxylate metabolism and the pentose phosphate pathway. These results indicated that the toxicity of Ti3C2Tx to D. magna has a size-dependent effect at the metabolic level, and both sheet sizes of Ti3C2Tx can lead to metabolic disturbances in D. magna by interfering with lipid and amino acid metabolism pathways.


Assuntos
60496 , Nitritos , Elementos de Transição , Poluentes Químicos da Água , Animais , Daphnia , Titânio/farmacologia , Triptofano/metabolismo , Triptofano/farmacologia , Poluentes Químicos da Água/toxicidade
4.
Nature ; 628(8006): 180-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480886

RESUMO

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptofano , Animais , Feminino , Humanos , Masculino , Camundongos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efeitos dos fármacos , Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Suplementos Nutricionais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/patogenicidade , Escherichia coli O157/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Receptores de Dopamina D2/metabolismo , Triptofano/administração & dosagem , Triptofano/metabolismo , Triptofano/farmacologia
5.
J Agric Food Chem ; 72(13): 7140-7154, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518253

RESUMO

Microplastics derived from plastic waste have emerged as a pervasive environmental pollutant with potential transfer and accumulation through the food chain, thus posing risks to both ecosystems and human health. The gut microbiota, tightly intertwined with metabolic processes, exert substantial influences on host physiology by utilizing dietary compounds and generating bacterial metabolites such as tryptophan and bile acid. Our previous studies have demonstrated that exposure to microplastic polystyrene (PS) disrupts the gut microbiota and induces colonic inflammation. Meanwhile, intervention with cyanidin-3-O-glucoside (C3G), a natural anthocyanin derived from red bayberry, could mitigate colonic inflammation by reshaping the gut bacterial composition. Despite these findings, the specific influence of gut bacteria and their metabolites on alleviating colonic inflammation through C3G intervention remains incompletely elucidated. Therefore, employing a C57BL/6 mouse model, this study aims to investigate the mechanisms underlying how C3G modulates gut bacteria and their metabolites to alleviate colonic inflammation. Notably, our findings demonstrated the efficacy of C3G in reversing the elevated levels of pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and the upregulation of mRNA expression (Il-6, Il-1ß, and Tnf-α) induced by PS exposure. Meanwhile, C3G effectively inhibited the reduction in levels (IL-22, IL-10, and IL-4) and the downregulation of mRNA expression (Il-22, Il-10, and Il-4) of anti-inflammatory cytokines induced by PS exposure. Moreover, PS-induced phosphorylation of the transcription factor NF-κB in the nucleus, as well as the increased level of protein expression of iNOS and COX-2 in the colon, were inhibited by C3G. Metabolisms of gut bacterial tryptophan and bile acids have been extensively implicated in the regulation of inflammatory processes. The 16S rRNA high-throughput sequencing disclosed that PS treatment significantly increased the abundance of pro-inflammatory bacteria (Desulfovibrio, norank_f_Oscillospiraceae, Helicobacter, and Lachnoclostridium) while decreasing the abundance of anti-inflammatory bacteria (Dubosiella, Akkermansia, and Alistipes). Intriguingly, C3G intervention reversed these pro-inflammatory changes in bacterial abundances and augmented the enrichment of bacterial genes involved in tryptophan and bile acid metabolism pathways. Furthermore, untargeted metabolomic analysis revealed the notable upregulation of metabolites associated with tryptophan metabolism (shikimate, l-tryptophan, indole-3-lactic acid, and N-acetylserotonin) and bile acid metabolism (3b-hydroxy-5-cholenoic acid, chenodeoxycholate, taurine, and lithocholic acid) following C3G administration. Collectively, these findings shed new light on the protective effects of dietary C3G against PS exposure and underscore the involvement of specific gut bacterial metabolites in the amelioration of colonic inflammation.


Assuntos
Microbioma Gastrointestinal , Interleucina-10 , Camundongos , Animais , Humanos , Antocianinas/farmacologia , RNA Ribossômico 16S , Fator de Necrose Tumoral alfa/farmacologia , Plásticos/farmacologia , Poliestirenos/farmacologia , Interleucina-6/farmacologia , Interleucina-4 , Ecossistema , Triptofano/farmacologia , Camundongos Endogâmicos C57BL , Citocinas/genética , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Anti-Inflamatórios/farmacologia , Glucosídeos/farmacologia , Ácidos e Sais Biliares/farmacologia , RNA Mensageiro
6.
J Med Chem ; 67(8): 6365-6383, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38436574

RESUMO

Antimicrobial peptides (AMPs) have emerged as promising agents to combat the antibiotic resistance crisis due to their rapid bactericidal activity and low propensity for drug resistance. However, AMPs face challenges in terms of balancing enhanced antimicrobial efficacy with increased toxicity during modification processes. In this study, de novo d-type ß-hairpin AMPs are designed. The conformational transformation of self-assembling peptide W-4 in the environment of the bacterial membrane and the erythrocyte membrane affected its antibacterial activity and hemolytic activity and finally showed a high antibacterial effect and low toxicity. Furthermore, W-4 displays remarkable stability, minimal occurrence of drug resistance, and synergistic effects when combined with antibiotics. The in vivo studies confirm its high safety and potent wound-healing properties at the sites infected by bacteria. This study substantiates that nanostructured AMPs possess enhanced biocompatibility. These advances reveal the superiority of self-assembled AMPs and contribute to the development of nanoantibacterial materials.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Hemólise , Testes de Sensibilidade Microbiana , Nanofibras , Triptofano , Nanofibras/química , Triptofano/química , Triptofano/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/síntese química , Hemólise/efeitos dos fármacos , Animais , Humanos , Camundongos
7.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326234

RESUMO

Sweet corn is one of the most popular vegetables worldwide. However, traditional shrunken2 (sh2 )-based sweet corn varieties are poor in nutritional quality. Here, we analysed the effect of (1) ß-carotene hydroxylase1 (crtRB1 ), (2) opaque2 (o2 ) and (3) o2+crtRB1 genes on nutritional quality, germination, seed vigour and physico-biochemical traits in a set of 27 biofortified sh2 -based sweet corn inbreds. The biofortified sweet corn inbreds recorded significantly higher concentrations of proA (16.47µg g-1 ), lysine (0.36%) and tryptophan (0.09%) over original inbreds (proA: 3.14µg g-1 , lysine: 0.18%, tryptophan: 0.04%). The crtRB1 -based inbreds had the lowest electrical conductivity (EC), whereas o2 -based inbreds possessed the highest EC. The o2 +crtRB1 -based inbreds showed similar EC to the original inbreds. Interestingly, o2 -based inbreds also had the lowest germination and seed vigour compared to original inbreds, whereas crtRB1 and o2 +crtRB1 introgressed sweet corn inbreds showed similar germination and seed vigour traits to their original versions. This suggested that the negative effect of o2 on germination, seed vigour and EC is nullified by crtRB1 in the double mutant sweet corn. Overall, o2 +crtRB1 -based sweet corn inbreds were found the most desirable over crtRB1 - and o2 -based inbreds alone.


Assuntos
Germinação , Zea mays , Zea mays/genética , Verduras , Lisina/genética , Lisina/farmacologia , Triptofano/genética , Triptofano/farmacologia , Sementes/genética , Genótipo
8.
Poult Sci ; 103(4): 103509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387289

RESUMO

Light pollution is a potential risk factor for intestinal health. Tryptophan plays an important role in the inhibition of intestinal inflammation. However, the mechanism of tryptophan in alleviating intestinal inflammation caused by long photoperiod is still unclear. This study investigated the anti-inflammatory effect of dietary tryptophan on intestinal inflammatory damage induced by long photoperiod and its potential mechanism in broiler chickens. We found that dietary tryptophan mitigated long photoperiod-induced intestinal tissue inflammatory damage and inhibited the activation of Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3 inflammasome. Moreover, dietary tryptophan significantly increased the relative abundance of Faecalibacterium, Enterococcus, and Lachnospiraceae_NC2004_group were significantly decreased the relative abundance of Ruminococcus_torques_group and norank_f_UCG-010 under the condition of long photoperiod (P < 0.05). The results of tryptophan targeted metabolomics show that tryptophan significantly increased indole-3-acetic acid (IAA) and indole-3 lactic acid (ILA), and significantly decreased xanthurenic acid (XA) under long photoperiod (P < 0.05). In conclusion, the results indicated that dietary tryptophan alleviates intestinal inflammatory damage caused by long photoperiod via the inhibition of Nucleotide-Binding Oligomerization Domain, Leucine-Rich Repeat and Pyrin Domain-Containing 3 inflammasome activation, which was mediated by tryptophan metabolites. Therefore, tryptophan supplementation could be a promising way to protect the intestine health under the condition of long photoperiod.


Assuntos
Microbioma Gastrointestinal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Galinhas/fisiologia , Triptofano/farmacologia , Triptofano/metabolismo , Leucina/farmacologia , Fotoperíodo , Inflamação/veterinária , Nucleotídeos/farmacologia
9.
Respir Res ; 25(1): 31, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221627

RESUMO

BACKGROUND: Drug-induced interstitial lung disease (DILD) is a lung injury caused by various types of drugs and is a serious problem in both clinical practice and drug development. Clinical management of the condition would be improved if there were DILD-specific biomarkers available; this study aimed to meet that need. METHODS: Biomarker candidates were identified by non-targeted metabolomics focusing on hydrophilic molecules, and further validated by targeted approaches using the serum of acute DILD patients, DILD recovery patients, DILD-tolerant patients, patients with other related lung diseases, and healthy controls. RESULTS: Serum levels of kynurenine and quinolinic acid (and kynurenine/tryptophan ratio) were elevated significantly and specifically in acute DILD patients. The diagnostic potentials of these biomarkers were superior to those of conventional lung injury biomarkers, Krebs von den Lungen-6 and surfactant protein-D, in discriminating between acute DILD patients and patients with other lung diseases, including idiopathic interstitial pneumonia and lung diseases associated with connective tissue diseases. In addition to identifying and evaluating the biomarkers, our data showed that kynurenine/tryptophan ratios (an indicator of kynurenine pathway activation) were positively correlated with serum C-reactive protein concentrations in patients with DILD, suggesting the potential association between the generation of these biomarkers and inflammation. Our in vitro experiments demonstrated that macrophage differentiation and inflammatory stimulations typified by interferon gamma could activate the kynurenine pathway, resulting in enhanced kynurenine levels in the extracellular space in macrophage-like cell lines or lung endothelial cells. Extracellular quinolinic acid levels were elevated only in macrophage-like cells but not endothelial cells owing to the lower expression levels of metabolic enzymes converting kynurenine to quinolinic acid. These findings provide clues about the molecular mechanisms behind their specific elevation in the serum of acute DILD patients. CONCLUSIONS: The serum concentrations of kynurenine and quinolinic acid as well as kynurenine/tryptophan ratios are promising and specific biomarkers for detecting and monitoring DILD and its recovery, which could facilitate accurate decisions for appropriate clinical management of patients with DILD.


Assuntos
Doenças Pulmonares Intersticiais , Lesão Pulmonar , Humanos , Cinurenina/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia , Ácido Quinolínico/metabolismo , Células Endoteliais/metabolismo , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/diagnóstico , Biomarcadores
10.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279240

RESUMO

In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.


Assuntos
Proteínas de Choque Térmico , Lactação , Gravidez , Feminino , Bovinos , Animais , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Dieta/veterinária , Triptofano/farmacologia , Triptofano/metabolismo , Rúmen , Leucócitos Mononucleares , Leite/metabolismo , Resposta ao Choque Térmico/fisiologia , Suplementos Nutricionais , Expressão Gênica , Temperatura Alta
11.
Mol Nutr Food Res ; 68(2): e2300601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38031265

RESUMO

SCOPE: Recent studies have highlighted the vital role of gut microbiota in the pathogenesis of Alzheimer's disease (AD). However, the effect of the regulation of gut microbiota by dietary components on AD remains unknown. Thus, the study explored that a high-tryptophan (Trp) diet alleviates cognitive impairment by regulating microbiota. METHODS AND RESULTS: Male APP/PS1 mice are fed 0.5% Trp diet for 4 weeks, and then cognitive function, amyloid-ß (Aß) deposition, microglial activation, proinflammatory cytokines production, and gut microbiota are detected. Moreover, the level of aryl hydrocarbon receptor (AhR) and NF-κB pathway related protein are determined. The results show that high-Trp diet significantly alleviates cognitive impairment and Aß deposits. Moreover, high-Trp diet significantly inhibits activation of microglia, decreases the level of cluster of differentiation 11b (CD11b), and restrains the activation markers of microglia, such as cyclooxygenase-2 (Cox-2), interleukin (IL)-1ß, and IL-6. Notably, high-Trp diet significantly activates AhR, inhibits the phosphorylation of p65, and improves microbiota dysbiosis. CONCLUSIONS: These findings demonstrated that high-Trp diet exerts anti-inflammatory effects via upregulating AhR and suppressing NF-κB pathway, and its mechanisms may be mediated by regulating gut microbiota, suggesting that Trp diet may be a potential strategy for AD intervention.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Triptofano/farmacologia , Triptofano/metabolismo , NF-kappa B , Doenças Neuroinflamatórias , Receptores de Hidrocarboneto Arílico , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Dieta , Camundongos Transgênicos
12.
J Biochem Mol Toxicol ; 38(1): e23529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702290

RESUMO

Ionizing radiation interacts with the immune system and induces molecular damage in the cellular milieu by generating reactive oxygen species (ROS) leading to cell death. The present study was performed to investigate the protective efficacy of N-acetyl-L-tryptophan (NAT) against gamma-radiation-induced cell death in murine macrophage J774A.1 cells. The radioprotective efficacy of NAT was evaluated in terms of cell survivability, effect on antioxidant enzyme activity, and free radicals inhibition. Radioprotective efficacy of NAT pretreatment to irradiated cells was assessed via cell cycle progression, mitochondrial membrane potential (MMP) perturbation, and apoptosis regulation using flow cytometry. Results of the study demonstrated significant radioprotective efficacy (>80%) of NAT in irradiated cells as estimated by sulforhodamine B (SRB), MTT, and clonogenic assay. Significant (p < 0.001) reduction in ROS, xanthine oxidase, and mitochondrial superoxide levels along with increment in catalase, glutathione-s-transferase, glutathione, and ATPase activities in NAT pretreated plus irradiated cells was observed as compared to the gamma-irradiated cells. Further, significant (p < 0.001) stabilization of MMP and reduction in apoptosis was also observed in NAT pretreated plus irradiated cells as compared to irradiated cells that not pretreated with NAT. The current study demonstrates that NAT pretreatment to irradiated cells protects against gamma radiation-induced cell death by reducing oxidative stress, stabilizing MMP, and inhibiting apoptosis. These observations conclusively highlight the potential of developing NAT as a prospective radioprotective agent upon further validation using in-depth preclinical assessment in cellular and animal models.


Assuntos
Doenças Mitocondriais , Protetores contra Radiação , Animais , Camundongos , Triptofano/farmacologia , Triptofano/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estudos Prospectivos , Morte Celular , Apoptose , Estresse Oxidativo , Oxirredução , Macrófagos/metabolismo , Homeostase , Doenças Mitocondriais/metabolismo , Protetores contra Radiação/farmacologia , Antioxidantes/farmacologia
13.
Adv Mater ; 36(2): e2307263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743633

RESUMO

Unsatisfied tumor accumulation of chemotherapeutic drugs and a complicated immunosuppressive microenvironment diminish the immune response rate and the therapeutic effect. Surface modification of these drugs with target ligands can promote their cellular internalization, but the modified drugs may be subjected to unexpected immune recognition and clearance. Herein, a phenylboronic acid (PBA) group-shieldable dendritic nanomedicine that integrates an immunogenic cell death (ICD)-inducing agent (epirubicin, Epi) and an indoleamine 2,3-dioxgenase 1 (IDO1) inhibitor (NLG919) is reported for tumor chemo-immunotherapy. This NLG919-loaded Epi-conjugated PEGylated dendrimers bridged with boronate bonds (NLG919@Epi-DBP) maintains a stable nanostructure during circulation. Under a moderate acidic condition, the PBA group exposes to the sialic acid residue on the tumor cell membrane to enhance the internalization and penetration of NLG919@Epi-DBP. At pH 5.0, NLG919@Epi-DBP rapidly disassembles to release the incorporated Epi and NLG919. Epi triggers robust ICD of tumor cells that evokes strong immune response. In addition, inhibition of the IDO1 activity downregulates the metabolism of L-tryptophan to kynurenine, leading to a reduction in the recruitment of immunosuppressive cells and modulation of the tumor immune microenvironment. Collectively, this promising strategy has been demonstrated to evoke robust immune response as well as remodel the immunosuppressive microenvironment for an enhanced chemo-immunotherapeutic effect.


Assuntos
Nanomedicina , Neoplasias , Humanos , Epirubicina/química , Neoplasias/terapia , Triptofano/química , Triptofano/metabolismo , Triptofano/farmacologia , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral
14.
Future Microbiol ; 19: 195-211, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126934

RESUMO

Aim: In order to search for novel antibacterial therapeutics against Gram-negative bacteria, the antibacterial efficacies and mechanism of action of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs were investigated. Materials & methods: We performed a killing assay to determine their efficacy; fluorescence, microscopic studies were used to understand their mechanism and peptide-lipopolysaccharide interaction. A checkerboard assay was used to find the effective combination of peptide and antibiotics. Results: Ana-peptides displayed good killing activity against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Their strong interaction with lipopolysaccharide damaged the bacterial membranes and led to their subsequent death. Ana-5, the highest cationic and hydrophobic analog, emerged as the most potent peptide, showing synergistic action with rifampicin and erythromycin. Conclusion: Ana-5 can be presented as an important therapeutic candidate against bacterial infections.


Bacteria can cause infections. These infections are becoming harder to treat, because excessive use of antibiotics can cause these bacteria to become less susceptible to medicine. In hospitals, these bacteria can cause infections in the lungs, urinary tract, blood, or on the skin. Our bodies make small molecules called antimicrobial peptides (AMPs) to fight against bacteria. AMPs can weaken or quickly destroy bacteria by attaching to their surfaces and breaking them down. Our laboratory has made an AMP called Ana-5. Using Ana-5 with regular medicine is better at killing bacteria. Ana-5 is not only good at fighting these bacteria, but may also help to prevent future infections.


Assuntos
Lipopolissacarídeos , Triptofano , Triptofano/farmacologia , alfa-MSH/farmacologia , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Escherichia coli , Testes de Sensibilidade Microbiana
15.
Br J Pharmacol ; 181(1): 162-179, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594378

RESUMO

BACKGROUND AND PURPOSE: Membranous nephropathy (MN) is an immune-mediated glomerular disease in adults. Antibody- and antigen-bonding mechanisms have been largely clarified, but the subepithelium immune complex deposition-mediated downstream molecular mechanisms are currently unresolved. Increasing evidence has suggested that gut microbiota contribute to MN pathogenesis. EXPERIMENTAL APPROACH: In this study, we identified alterations in faecal gut microbiota and serum metabolites that mediate an aryl hydrocarbon receptor (AhR) mechanism in cationic bovine serum albumin (CBSA)-induced MN rats and in patients with idiopathic MN (IMN). KEY RESULTS: Impaired renal function correlated with the relative abundance of reduced faecal probiotics, Lactobacillus and Bifidobacterium, and altered serum levels of tryptophan-produced indole derivatives (TPIDs) in MN rats. Further results showed that reduced relative abundance of five probiotics, namely Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus vaginalis, Lactobacillus reuteri and Bifidobacterium animalis, positively correlated with decreased levels of indole-3-pyruvic acid, indole-3-aldehyde and tryptamine and negatively correlated with increased levels of indole-3-lactic acid and indole-3-acetic acid in serum of MN rats. Altered five probiotics and five TPIDs also were observed in patients with IMN. Further studies showed that MN rats exhibited a significant increase in intrarenal mRNA expression of AhR and its target genes CYP1A1, CYP1A2 and CYP1B1, which were accompanied by protein expression of down-regulated cytoplasmic AhR, but up-regulated nuclear AhR, in MN rats and IMN patients. CONCLUSION AND IMPLICATIONS: Activation of the intrarenal AhR signalling pathway may involve five TPIDs. These data suggest that gut microbiota could influence MN through TPIDs that engage host receptors.


Assuntos
Microbioma Gastrointestinal , Glomerulonefrite Membranosa , Indóis , Lactobacillus , Receptores de Hidrocarboneto Arílico , Lactobacillus/fisiologia , Glomerulonefrite Membranosa/microbiologia , Triptofano/farmacologia , Indóis/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Humanos , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Transdução de Sinais
16.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959734

RESUMO

Two triple interpenetrating Zn(II)-based MOFs were studied in this paper. Named [Zn6(1,4-bpeb)4(IPA)6(H2O)]n (MOF-1) and {[Zn3(1,4-bpeb)1.5(DDBA)3]n·2DMF} (MOF-2), {1,4-bpeb = 1,4-bis [2-(4-pyridy1) ethenyl]benze, IPA = Isophthalic acid, DDBA = 3,3'-Azodibenzoic acid}, they were synthesized by the hydrothermal method and were characterized and stability tested. The results showed that MOF-1 had good acid-base stability and solvent stability. Furthermore, MOF-1 had excellent green fluorescence and with different phenomena in different solvents, which was almost completely quenched in acetone. Based on this phenomenon, an acetone sensing test was carried out, where the detection limit of acetone was calculated to be 0.00365% (volume ratio). Excitingly, the MOF-1 could also be used as a proportional fluorescent probe to specifically detect tryptophan, with a calculated detection limit of 34.84 µM. Furthermore, the mechanism was explained through energy transfer and competitive absorption (fluorescence resonance energy transfer (FRET)) and internal filtration effect (IFE). For antibacterial purposes, the minimum inhibitory concentrations of MOF-1 against Escherichia coli and Staphylococcus aureus were 19.52 µg/mL and 39.06 µg/mL, respectively, and the minimum inhibitory concentrations of MOF-2 against Escherichia coli and Staphylococcus aureus were 68.36 µg/mL and 136.72 µg/mL, respectively.


Assuntos
Acetona , Zinco , Zinco/farmacologia , Triptofano/farmacologia , Metais/farmacologia , Antibacterianos/farmacologia , Compostos Orgânicos/farmacologia , Solventes/farmacologia , Escherichia coli
17.
BMC Biol ; 21(1): 249, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940940

RESUMO

BACKGROUND: Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS: Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS: Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS: Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Triptofano/genética , Triptofano/metabolismo , Triptofano/farmacologia , Fotossíntese , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas
18.
J Control Release ; 363: 496-506, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788761

RESUMO

Indoleamine 2,3-dioxygenase (IDO) has been studied as a promising target for cancer immunotherapy. IDO catalyzes the oxidation of tryptophan into kynurenine, which subsequently activates regulatory T cells, thereby promoting an immunosuppressive microenvironment in the tumor tissue. Due to its overexpression in tumor cells, IDO itself could be a tumor-specific stimulus for targeted cancer therapy. Toward this objective, we developed IDO-triggered swellable micelles for targeted cancer immunotherapy. The micelles are prepared by the self-assembly of amphiphilic polymers containing polymerized tryptophan as a hydrophobic block. The micelles exhibited IDO-responsive behavior via solubility conversion of the hydrophobic core triggered by the oxidation of tryptophan residues into kynurenine. The micelles were internalized into tumor cells and disassembled by overexpressed IDO. Loaded with IDO inhibitor, the micelle presented enhanced therapeutic antitumor effect, and effector T-cells were recruited into the tumor tissue. We demonstrated that overexpressed IDO in cancer cells could be utilized as a tumor-specific stimulus, and utilizing an IDO-responsive drug delivery system holds great promise for targeted cancer therapy and immunomodulation.


Assuntos
Neoplasias , Triptofano , Humanos , Triptofano/química , Triptofano/farmacologia , Cinurenina , Micelas , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
19.
J Agric Food Chem ; 71(44): 16568-16580, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37875137

RESUMO

Constipation, a common gastrointestinal dysfunction, damages patients' life quality and predisposes them to other serious diseases. Current strategies against constipation often cause drug dependency and side effects. Here, we demonstrated that broccoli-derived exosome-like nanoparticles (BENs), a natural product with high gastrointestinal stability, ameliorated LOP-induced constipation in mice. Specifically, orally administered BENs (17.5 mg/kg/d) effectively shortened defecation time, sped up intestinal propulsion rate, and increased feces amount in constipated mice. BENs also raised excitatory neurotransmitters SP and MTL and reduced inhibitory neurotransmitters VIP and ET-1. Mechanistically, BENs were taken up by gut microbes, restored LOP-disordered gut microbiota, and altered microbial metabolism of SCFAs and tryptophan, as evidenced by the results of fluorescence microscopy, 16S rRNA gene sequencing, and nontargeted metabolomics. Thereinto, BEN-enriched SCFA-producing microorganisms are closely associated with the feces amount and SP and VIP levels and BEN-elevated indole-3-pyruvic acid and 3-indoleacetic acid are highly linked to ET-1, SP, and MTL levels. Conclusively, BENs, mitigating constipation by regulating gut microbiota and microbial tryptophan metabolism, showed high potential to be developed as alternative regimens for constipation.


Assuntos
Brassica , Exossomos , Microbioma Gastrointestinal , Nanopartículas , Humanos , Camundongos , Animais , Loperamida/efeitos adversos , Triptofano/farmacologia , RNA Ribossômico 16S , Exossomos/metabolismo , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Neurotransmissores
20.
J Diabetes Res ; 2023: 9164883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840577

RESUMO

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Rosa , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Transdução de Sinais , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...